

Contents

1 Preface 1
1.1 Who am I? . 2
1.2 Intended audience . 2
1.3 Why I wrote this book . 2

2 Developer Registration 3
2.1 Evolution of the bada market place 5
2.2 Create a profile on the developer site 5
2.3 Registration page . 5

2.3.1 Pop quiz Developer registration 6
2.4 Summary . 6

3 Developer App Registration 7
3.1 Developer App Registration . 8

3.1.1 Lets register an app . 8
3.2 Privileges . 9

3.2.1 Go on, register an app . 9
3.3 Summary . 9

4 Seller Registration 11
4.1 Seller Registration . 12

4.1.1 Lets register as a seller . 12
4.2 Summary . 12

5 The IDE and App Deployment 15
5.1 The IDE and app deployment . 16

5.1.1 Getting the badaIDE . 16
5.1.2 Installing the SDK . 16

5.2 Now that we have an IDE lets write an app 16
5.2.1 Form1.cpp . 18
5.2.2 hellobook.cpp . 18
5.2.3 hellobookEntry.cpp . 19
5.2.4 manifest.xml . 19
5.2.5 application.xml . 19

i

ii CONTENTS

5.2.6 Pop quiz - creating the first app 19
5.3 Getting the app onto the phone 19

5.3.1 Getting the app into the store. 20
5.3.2 Generating the app package 20

5.4 Summary . 20

6 The Samsung Way 23
6.1 The ”Samsung way” . 24
6.2 A simple snake game . 24

6.2.1 Let’s write a simple snake game 24
6.3 Pop quiz - about the snake demo 35

6.3.1 Test the snake demo on the actual phone 35
6.4 Getting a handle on the three types of strings 35

6.4.1 Using Utf8Encoding . 36
6.4.2 Conversion between common strings and Osp::Base::String 37
6.4.3 The bada String class . 38
6.4.4 Convert between strings 38

6.5 Using the N() methods . 39
6.5.1 Deriving from the bada interfaces 40
6.5.2 implement an interface . 40
6.5.3 No STL, no exceptions, is this real C++..? and the

TryReturn(..) macros and reusing the bada example code 41
6.6 Privileges . 41

6.6.1 Discover why Privileges matter 41
6.7 Summary . 43

7 UI Programming 45
7.1 UI Programming . 46
7.2 Forms: creating and selecting forms 46

7.2.1 Graphic Design . 52
7.2.2 The forms . 52

7.3 Using Panels . 53
7.3.1 Tab UI controls . 53
7.3.2 The GetControl in the OnInitializing() 55
7.3.3 Interfaces and event listeners 55
7.3.4 Pop quiz - Tab UI controls 56
7.3.5 Handling sliders and button controls 56

7.4 Web Controls . 59
7.4.1 Using Web Controls . 59
7.4.2 Explore the web controls from the UI builder 60

7.5 Popup message boxes . 60
7.6 PopUp message boxes . 63

7.6.1 Pop quiz - Popup message boxes 63
7.6.2 Your own pop up button class 63

7.7 Using Custom lists . 63
7.7.1 Using Custom lists . 64

CONTENTS iii

7.8 Custom list items . 68
7.9 Image file formats . 68

7.9.1 A story that happened to me and stressed me out at the
time . 68

7.9.2 Pop quiz Image file formats 68
7.9.3 Custom lists and bitmaps 69

7.10 Messages . 69
7.10.1 Handling messages . 70
7.10.2 Pop quiz handling messages 70
7.10.3 Messages . 71

7.11 Summary . 71

8 Sensor Programming 73
8.1 Sensor programming . 74
8.2 Exploring the sensors . 74

8.2.1 Handling device orientation, tilt, gestures, motion and
compass . 77

8.2.2 Pop quiz Sensor events 78
8.3 Extending the snake game . 78

8.3.1 Make the snake game playable 78
8.4 Final Thoughts . 84
8.5 Summary . 84

9 Network Programming 87
9.1 Network programming . 88

9.1.1 Prior network programming knowledge 88
9.2 Accessing www.delicious.com web services 88

9.2.1 Pop quiz Accessing web services 106
9.3 Parse it properly . 106
9.4 XPath . 108
9.5 Lower level programming - sockets 109
9.6 Sockets programming . 109

9.6.1 Standard network programming 115
9.7 The WebApp Framework . 116
9.8 Summary . 116

10 Getting Social 117
10.1 Getting social . 118
10.2 Privileges . 118
10.3 Accessing maps . 118
10.4 Explore the SDK map sample . 119
10.5 Location app . 121

10.5.1 The official Samsung bada way 124
10.5.2 The other way of doing things - WebControl 124

10.6 Accessing facebook and twitter 126
10.6.1 Examining the SNS SDK examples 126

iv CONTENTS

10.6.2 The other way of doing it HttpTransactions without SNS 127
10.7 Google services . 128

10.7.1 Use other Google services 137
10.8 Summary . 137

11 Debugging Techniques 139
11.1 Debugging techniques . 140
11.2 Downloading code onto the phone 140

11.2.1 Transfer the certificate to the phone 141
11.2.2 Transfer the app to the phone 142
11.2.3 Problems transferring to the phone 142
11.2.4 Debug something on the phone 142

11.3 Introduction to the debugger . 142
11.3.1 Using the debugger . 143
11.3.2 Pop quiz Using the debugger 145

11.4 Using log messages . 145
11.5 Introduction to the memory leak tool 146

11.5.1 Using the memory leak tool 146
11.5.2 Problems with the memory leak tool 148
11.5.3 Pop quiz using the memory leak tool 148

11.6 Common reasons why apps crash 149
11.6.1 C++ knowledge . 149
11.6.2 Contribute on the forums if you can 150
11.6.3 Examining common reasons why apps misbehave 150

11.7 Summary . 150

12 Polishing the App 153
12.1 Polishing the App . 154
12.2 What makes an app look professional? 154
12.3 Remembering the App state and preferences 154

12.3.1 Using the registry . 154
12.3.2 Not like the Windows Registry 156
12.3.3 SQL Lite . 156
12.3.4 Storing data in SQL lite 157
12.3.5 SQL Lite . 160

12.4 Profiling the code . 161
12.4.1 Profiling the code . 162
12.4.2 Another way of profiling 165

12.5 Optimising code . 166
12.6 Menus and context . 166

12.6.1 Adding menus and context 166
12.6.2 Option Menus . 166
12.6.3 Context menus . 167
12.6.4 Context menus . 168
12.6.5 Menus and context menus 168

12.7 Shiny objects, marketing and psychology 168

CONTENTS v

12.8 Summary . 169

13 Advanced Topics 171
13.1 Advanced topics . 172
13.2 Explore some fundamental graphics code 172

13.2.1 PowerVR . 174
13.2.2 Pop quiz OpenGL programming 174

13.3 Explore how the badaIDE works 175
13.3.1 XML fun . 176
13.3.2 GCC . 176

13.4 Assembler . 177
13.5 Get involved and collaborate . 178

13.5.1 Pop quiz Collaboration and under the hood 182
13.5.2 Getting to know the IDE from inside out 182

13.6 A Super Computer in your pocket 183
13.6.1 Register protection . 184
13.6.2 YIELD !! . 184
13.6.3 The Assembler . 184
13.6.4 ARM abounds . 184
13.6.5 Pop quiz assembler tricks 185

13.7 Summary . 186

14 Porting from other platforms 187
14.1 Migrating from other mobile platforms 188
14.2 iPhone/iPad developers . 188

14.2.1 IDE and UI Builder . 188
14.2.2 FObject vs NSObject . 189
14.2.3 Two stage initialization 189
14.2.4 Application structure . 189
14.2.5 Exception handling . 190

14.3 Android and Blackberry developers 190
14.3.1 IDE and UI Builder . 190
14.3.2 Two stage initialization 191
14.3.3 Application structure . 191
14.3.4 Exception handling . 191
14.3.5 Interfaces . 191
14.3.6 Managed vs unmanaged code 192

14.4 Some general bada/C++ pitfalls 192
14.4.1 Default parameters . 192
14.4.2 Templates . 192
14.4.3 bada interfaces and multiple inheritance 193

14.5 Summary . 193

7

A complete version of this book is available from
pymblesoftware.com/book

2 CHAPTER 1. PREFACE

This book is a guide to how to develop real world applications on the Sam-
sung Wave and Samsung bada based mobile phones. Here you will find the
examples you need to adapt your C++ or mobile device skills to this new plat-
form from Samsung.

1.1 Who am I?

I have been a professional software developer in C since 1988. I was a bada
product specialist with Samsung in Samsungs Sydney Olympic Park offices at
the time of the official launch of bada. I offer consoulting services and maintain
a web presense at: www.pymblesoftware.com

1.2 Intended audience

It is assumed that you are a capable developer with at least a couple of years
experience, possibly with some mobile app experience and comfortable with gen-
eral programming constructs such as Object-Orientated Programming, point-
ers, Web Services, and asynchronous messaging. You should know a little about
XML as the application manifest and application meta data relies on it.

C++ knowledge is strongly recommend before you tackle this book but
programmers from a Objective-C, C, or Java background should be able to
adapt themselves to C++ and the APIs covered in this book.

1.3 Why I wrote this book

The initial book on bada was not much more exciting than a cut and paste from
the online help. As a Samsung employee around the time of the launch, I was
tasked with the mission of teaching iPhone and Android developers the ways of
bada and to write apps when where the need arose.

I had high hopes for the initial bada book before it was released and was
expecting a book more tutorial and practial in nature. The initial book was also
very rah-rah and not very objective of where bada has issues. At times I was
forced to work around badas limitations and the only resources suffering from
a dose of marketing spin didn’t seem to help.

This book is the book I wanted to teach bada from. I was delighted to be
approached by a publisher, although I had never heard of them, commisioned
me to write the book that I wanted. After 180 pages of text, graphics and
computer programs, and 6 rewrites on some chapters, the publisher dropped
out of the project for their own reasons. This book is almost complete rewrite
from start to finish, since then. I hope you find this book useful.

Regan Russell,
Sydney, Australia

March 17, 2012

9

A complete version of this book is available from
pymblesoftware.com/book

7.3. USING PANELS 53

7.3 Using Panels

Imagine that you run out of space on a form, for whatever reason you cant
create another form, so you start recreating all your controls on a scroll panel
Lets see what happens. Create a new app. Go to the UI Builder and drop a
Scroll panel on to the main form. Double click on the scroll panel to open it.
Drop a button control onto the scroll panel. Go to the main form source file and
go to the OnInitializing() method. Add the following code to the OnInitialiszing
method:

using namespace Osp : : UI : : Contro l s ;

Button ∗myButton = static cast<Button ∗> GetControl (L”
IDC BUTTON OK”) ;

myButton−>SetAct ionEventLi s tener (∗ this) ;

Run the app. Does it crash at start up?
Change the GetControl() line to read
GetControl(L”IDC BUTTON OK” , true);
Run the app again, does it crash this time?
Ah ha! Gotcha! For some reason in their wisdom, the designers of bada

decided that the 2nd parameter of the API function GetControl should be a
default parameter and that default effectively returns NULL if your control is
on the child of the form, not the form itself. And you would never move a control
off a form and on to a panel would you? Will you remember to always set this
second parameter in case you move controls from a form onto a forms panel?
Or at the very least check the result of GetControl before trying to dereference
it.

7.3.1 Tab UI controls

Tabs are useful for creating panes that can be switched between easily. Most
apps that have a wizard like structure can be condensed down to a few tabs.

We are going to create a tab control 1. Create a new app.
2. Open the UI builder with the main form by double clicking the main form.
Go to the properties section of the form and select ”Show Tab” option drop
down and click on the text tab drop-down option.
3. Open the source file behind the main form.
4. In the OnInitializing() method of the MainForm add the following code:

Tab ∗pTab ;
pTab = GetTab () ;

i f (pTab)
{

pTab−>AddItem(L” F i r s t ” , 1) ;
pTab−>AddItem(L”Second” , 2) ;

11

A complete version of this book is available from
pymblesoftware.com/book

7.7. USING CUSTOM LISTS 67

blah blah blah blah blah blah blah blah blah
blah blah ”))) ;

pMainList−>AddItem(∗pPRItem2 , 2) ;
}

}
The two versions of the app should like this, which one gives you greater

design flexibility and looks more professional?

We have created some images and decoded image files into bitmaps. We

13

A complete version of this book is available from
pymblesoftware.com/book

68 CHAPTER 7. UI PROGRAMMING

created a custom list format and added elements to it. Some elements are text
of different sizes and other elements are images.

7.8 Custom list items

It may take a bit to understand but here is what to think I need to create a cus-
tom list so I will create a format that lays out images and text in different sizes,
styles and locations that looks good. Then I will need to iterate of the dataset
from my data model and set images and text elements in a newly constructed
Custom list item. Finally I will remember to add this item to the custom list.
And that is all there is to it.

7.9 Image file formats

When I first came across bada I expected image file format stuff to be pretty
simple. I expected something like Bitmap = LoadImageFromFile() .But no,
it was not to be, image file formats have to be decoded into a bitmap using
different bitmap pixel formats for each type of file. The decode method is a
member of an image object.

7.9.1 A story that happened to me and stressed me out
at the time

Be very careful about other peoples data. As the FBI guy on TV who chases
space aliens said, ”Trust no-one”. I say ”Trust their data even less”. I was
writing something that extracted data from someone elses web service and pre-
sented it in a custom list. That data contained URLs for images. So based
on the URL the code I wrote would find a GIF, PNG or JPG and send some
BITMAP PIXEL FORMAT parameters to DecodeURL() and then using a
custom list control show the images along side the data pulled out of the web
service. After more days debugging and tearing my hair out than I would like to
admit, I found that almost by chance just because file is a .jpg file means that
it could be a png or gif or even jpg file. And the bada GetBitmapN(..) type
APIs require that you know the type of format in advance, and if you cannot
trust the file extension, then you have to look for other means. The web service
team let me in on seemingly unrelated fields and said something along the lines
of frustrating hackers or stopping people reusing images on their site. Well it
definitely frustrated me at the time.

7.9.2 Pop quiz Image file formats

1. What is the deal with bitmap pixel formats and their relation to decoded
images?

2. What the 3 stages of creating a custom list?

15

A complete version of this book is available from
pymblesoftware.com/book

88 CHAPTER 9. NETWORK PROGRAMMING

9.1 Network programming

There is no doubt that we live in a connected world and demand for connectivity
extends to when we are on the go. In this chapter we shall discuss: Web services
o REST XML JSON example code Socket programming So lets get on with
it...

9.1.1 Prior network programming knowledge

A lot of the network programming on bada is much like network programming
in any environment. One thing I strongly suggest is to arm yourself with knowl-
edge of TCP/IP and tools like Ethereal/Wireshark (www.wireshark.org) and/or
Fiddler (www.fiddler2.com).

9.2 Accessing www.delicious.com web services

A lot of my initial work on bada came from web services. A lot of people
are publishing RESTful web services and there are entire industries developing
access to them on different devices and platforms. Accessing www.delicious.com
web services Imagine that you are implementing a web service client for someone
or something, maybe local public transport time tables for your city or region.
Maybe a major company or sporting team want apps that customers and fans
will use. Open a web browser and type the following address into the tabs:
1. http://feeds.delicious.com/v2/rss 2. http://feeds.delicious.com/v2/json You
should get data back as seen in the following two screen shots:

and

17

A complete version of this book is available from
pymblesoftware.com/book

9.2. ACCESSING WWW.DELICIOUS.COM WEB SERVICES 95

19

A complete version of this book is available from
pymblesoftware.com/book

9.2. ACCESSING WWW.DELICIOUS.COM WEB SERVICES 105

0043 .980 ,DEBUG, P29 , T03 , A94 , MainForm : :
OnUserEventReceivedN (107) > (How to Upload a F i l e
in C#.NET) (H)

0044 .098 ,DEBUG, P29 , T03 , A94 , DataModel : :
OnTransactionCompleted (130) >
OnTransactionCompleted

0072 .780 ,INFO, P29 ,T−01,A94 , OspMain (39) > Appl i ca t ion
f i n i s h e d .

We verified that an ordinary web browser could access the feeds from the
web service we wanted or needed to use. This is important place to start because
the server side guys point the finger at the client side developers and client side
developers point the finger at the server side guys. Verifying it in a browser
establishes the basic service exists. We have used the bada wrapper around a
web kit based Http classes to implement a simple bookmark reader. We broke
the project up into a model view controller (MVC) structure. The app itself
could be considered the controller in the pattern and form the view and the
data model is obviously the model. We have built on the work of the previous
chapters. By saving the pointer the form that initiated the load request we are
able to send a user event to it as covered in the chapter on UI programming.
Also from the chapter on UI programming we have the skills and tools to make
a simple (Custom)List. To see the general pattern of http transactions, consider
the following sequence diagram.

The thing to take away from the diagram is the asynchronous nature of
the HttpTransaction. The flow of execution has returned from Load as soon
as the HttpTransaction is set up. It comes back via the ReadyToRead() and
SendUserEvent() when the load has completed. This is a pattern in dealing with
web service request apps in bada. The app (controller) creates (Main)forms
(views) and models (data models). The form calls load on the data model and
passes a pointer to itself for later notification, the data model sets up a Http-
Transaction. The transaction asynchronously goes of through the network stack
out onto the web and returns execution flow back to the data model through
calls to the interface methods of ReadyToRead(), TransactionCompleted() and
error handler methods. When there is data is read, the model sends a user event.
The main form calling the load method is not a correct implementation of the
MVC design but it is handy just to pass a ”this” pointer to the load method.
The load could just as easily (more correctly) be done from the controller (app)

21

A complete version of this book is available from
pymblesoftware.com/book

144 CHAPTER 11. DEBUGGING TECHNIQUES

buttons. F5 (arrow falls between the two dots icon) is for ”Step into”, if the
instruction where the debugger is stopped is a class method or ordinary function,
the debugger will switch to the source file containing the code that is called and
step into it. F6 (arrow over the dot icon) is for ”Stepping over” which just
moves to the next C++ statement F7 (arrow up and out icon) ”Steps out” of
the current method or function. It executes all the code up to the return or
exit point of the function or method. F8 (yellow bar, green arrow head icon)
”continue”s execution until another break point is hit or the program terminates.

Watching and examining memory

In the default layout, the top right pane of the Debug perspective contains
variables, breakpoints, registers, and modules tabs. The variable tab contains
names and contents that are relevant to the current context of the program.
Global, local and member variables will be shown here when they are in the
programs current scope.

If you break point inside a method of a class. The main object you will
be interested in most of the time is the ”this” pointer. Take some code that
initializes some member values in a constructor or OnInitializing() method.
Watch as the assignments of newly allocated objects is assigned to pointers in
the class as you step through the code. In the bottom pane there is a memory
tab. Expressions can be put into this frame and the memory contents evaluated.
This is helpful in looking at arrays and data structures where offsets into memory
locations are calculated. Using the output pane The output pane is always
visible in the bada perspective. In the Debug perspective you can also enable
this view from the menu item Window, choose other and then in the bada folder,
choose Output. Anything you put in the code with AppLogDebug(.) messages
will be display in the output pane. Be aware of one thing, AppLogDebug,
AppLog and friends are pre-processor macros. There is no type checking and no
compile time warnings about anything you pass to AppLogDebug(.) . I forgot
to put -¿GetPointer() at the end of a bada String pointer in an AppLogDebug()
message at the point where code was crashing for some other reason. It wasnt
funny at the time, and I am ashamed to admit that Ive done it more than once.

23

A complete version of this book is available from
pymblesoftware.com/book

148 CHAPTER 11. DEBUGGING TECHNIQUES

In the code at some random point, say in a constructor or OnInitializing()
method add some code to leak some memory:

String *Fred = new String(); String *Bob = new String(); You should see in
the problems pane at the bottom of the IDE window showing how many bytes
where leaked by which object.

We looked at the memory leak tool and learnt how to track down memory
leaks.

11.5.2 Problems with the memory leak tool

The memory leak tool doesnt track all memory allocation. There are times
when memory is consumed indirect of your codes requests. This is not always
tracked or was not always tracked in some SDK releases. The Samsung bada
SDK team in Korea denied the existence of the issue of the memory leak tool
not picking up leaks in the bada APIs. However, the memory leak detection
has been improving over the many recent bada releases. You need to remove
all leaks from you own code and then check memory usage and use other bada
APIs or refractor your code to restrict the number of calls to any APIs you
suspect are leaking.

11.5.3 Pop quiz using the memory leak tool

1. What would take the term ”Heap exhaustion” to mean?

Answer:

25

A complete version of this book is available from
pymblesoftware.com/book

12.4. PROFILING THE CODE 163

small amount of time, or it turns out that you need more accuracy than a lookup
table provides. Assembler is not a panacea for all performance ills and dont get
lost counting cycles if it degrades the effectiveness of the app. Optimization is
good nay, important, thing to do after the app is complete and you still have
time in the project to squeeze a few extra frames per second (or similar) out of
the app.

From the start menu, under the ”bada SDK x.x.x” group select ”Performance
Analyser”

Run an app to launch the emulator and then shutdown the app on the
emulator and stop debugging in the bada IDE, but leave the emulator running.

Click on the New button that looks like blank document with a yellow plus
in the top right corner.

You will see a configuration screen like:

27

A complete version of this book is available from
pymblesoftware.com/book

176 CHAPTER 13. ADVANCED TOPICS

the project, ignore that it no longer builds, change the value back to ”-c but do
not build it.

In the Windows file explorer, navigate to the root of the project then to

".Target-Debug\src"

. Open the the .o file with a Text editor gVim/ Edit/Notepad/etc. If you have
done the previous step of changing the miscellaneous option to S correctly the
file should contain an assembly language representation of the corresponding
C++ source file. Change the file extension of all the .o files to .s and with the
”c in the ”Miscellaneous flags make sure the project builds again.

Open a cmd.exe from Start/run and cd to

C:\bada\1.2.1\Tools\ToolChains\ARM\bin

. Do a directory listing. Note what you see.
If you have been paying attention from the beginning of the book, youll

remember that the project manifest files are XML, now we see that the forms
themselves are XML files.

13.3.1 XML fun

All of the resource files for your projects are stored as XML. You can edit any
of your project files with an xml fiel extension in a text editor like notepad in
the Windows Accessory group, or the bada IDE in text mode as we saw in the
previous pages. I worked with a bada developer who would not open the bada
SDK UI Builder for love or money not when he could do what he wanted in a
text editor any old time. ”See all the controls are lined up perfectly, see the
start position values and all the widths are exactly the same number, so there”
he might say and none of the graphic designers could argue.

13.3.2 GCC

The bada compiler is GNUs gcc. Full documentation on language extensions
and other topics is available at http://www.gnu.org/software/gcc/ .. Notice
that your directory listing included programs such as arm-samsung-nucleuseabi-
g++.exe .. At the core of the iPhone, bada and Android phones is the Samsung
Cortex licensed from ARM. Note core RTOS of Samsungs bada and Android
offerings is Nucleus (http://www.mentor.com/embedded-software/nucleus/) ..
bada sits on top of SHP (which as an API internal to Samsung has been around
for something like a decade or more) SHP is kind of like a portability layer from
TVs to washing machines, internal to Samsung and SHP sits directly on (in the
case of the current bada phone offerings) Nucleus. From the documentation you
should see the ARM specific options include:

−mapcs−frame −mno−apcs−frame
−mabi=name
−mapcs−stack−check −mno−apcs−stack−check

29

A complete version of this book is available from
pymblesoftware.com/book

14.2. IPHONE/IPAD DEVELOPERS 189

specify. You can set it in the property in the bada UI Builder or you can create
it the section specifying a control in the XML file representing the form. I like
to keep things grouped in a project in some consistent way. All my forms might
be numbered in hundreds 100, 200, 300 and the controls in the forms might be
units within each form: 101, 102, 201, and 301, belonging to forms 100, 100,
200 and 300 respectively. The Apple SDK is getting easier to use in terms of
UI builder and like but more recent versions of Xcode have begun to resemble
iTunes and that may not necessarily be an improvement in terms of usability
for infrequent users of iTunes. The bada UI builder does not contain controls as
slick and glossy as the iOS SDK and some developers from an iOS background
spent a lot of time desperately trying to recreate the iPhone look and feel by
sub-classing controls and overriding OnDraw() methods. It was amazing (and
sometimes frustrating) to watch a project change from 70% application logic to
get the main task done to 70% UI fiddling and 30% actual providing application
logic for what the user wanted to achieve with the app.

14.2.2 FObject vs NSObject

All items that end up in bada specific container classes have to be derived
from FObject and have comparator sort methods and remember that they must
always be created on the heap in bada or bad things will happen in your code
when containers clean up. Other than that FObject and NSObject can be
considered the root of all evil, uh, I mean the root of all classes in each platform.

14.2.3 Two stage initialization

The two-stage initialization construction of bada objects is generally not as
difficult to grasp for iOS developers. This is probably from the two-phase con-
struction of Objective-C objects, in the form:

MyClass ∗myPtr = [[MyClass a l l o c] i n i t] ;

The bada equivalent would be:

MyClass ∗myPtr = new MyClass () ;
myPtr−>Construct () ;

14.2.4 Application structure

Mobile apps go through an execution cycle: creation, suspension (phone call or
user suspends it), resume from suspension and shutdown. Here is a comparison
table of significant event methods in iPhone and bada:

iOS bada
UIApplicationDelegate - applicationDidFinishLaunching: myApp::OnAppInitializing()
UIApplicationDelegate - applicationWillResignActive: myApp::OnBackground()
UIApplicationDelegate - applicationWillEnterForeground: myApp::OnForeground()
UIApplicationDelegate - applicationWillTerminate: myApp::OnAppTerminating()

31

A complete version of this book is available from
pymblesoftware.com/book

Index

...N methods, 39

AddMapOverlay, 124
Android, 190
AppLogDebug, 145
ARM

Assembler, 178
CPU, 140
NEON SIMD instructions, 184
Simultator, 140

bada
defined as Korean word for ocean,

4
badaIDE, 4
BITMAP PIXEL FORMAT, 68
Blackberry, 190

Compass, 77
Context Menu, 167
Custom list items, 68
CVS, 178
Cygwin, 140

DecodeURL, 59, 68, 69
Developer Registration, 5
Device Orientation, 77
Diamond problem, 193

Eclipse, 193
EvaluateJavascriptN, 124

FaceBook, 118
Fiddler, 88
Fields

Color Picker, 58
Labels, 58
T-edit, 58

FObject, 189
Forms, 46

Layout advice, 46, 47, 52

gcc, 176
Gestures, 77
GetBitmap, 69
Google, 128

HTTP, 115

Image File Formats, 68
Interfaces, 40, 191
IOS, 194

Java, 190–192
JavaScript, 116
JSON, 108, 116

Log messages, 145

Manifest, 19, 20
Memory

Examining, 144
Leaks, 146
Watching, 144

Menu
Context, 167
Option, 166

Messages, 69
User Event, 93, 100, 135

Motion Sensors, 77

Nucleus, 176

OAuth2, 136
OnUserEventReceivedN, 71
OpenGL, 172–174

195

196 INDEX

Option menu, 166

Panels, 53
Gotcha, 53

PowerVR, 174
Privileges, 9, 41

LOCATION, 118
SNS SERVICE, 118
SYSTEM SERVICE, 83

Profiling, 161

Registers, 144
Registry, 154, 156
REST, 116

Samsung
Origin of company name, 24

Samsung Kies, 141
Samsung Way, 4, 24
Screenshot, 20
SHP, 176
Snake Game, 24
Snake game, 78
Sockets, 109
SQLLite, 156, 157, 160
Strings

c-style char *, 36
Osp::Base::String, 36
std:string, 36

Tab Controls, 53
TCP/IP, 88
Tilt, 77, 83
Timers, 69
Twitter, 118
Two-stage initialization, 189

USB Hard Drive mode, 141

WebControl, 124
Wireshark, 88

XML, 2, 19, 108, 116, 145
XPath, 108, 145

